Exploring Wavelet Transforms for Morphological Differentiation Between Functionally Different Cat Retinal Ganglion Cells
نویسندگان
چکیده
Cognition or higher brain activity is sometimes seen as a phenomenon greater than the sum of its parts. This viewpoint however is largely dependent on the state of the art of experimental techniques that endeavor to characterize morphology and its association to function. Retinal ganglion cells are readily accessible for this work and we discuss recent advances in computational techniques in identifying novel parameters that describe structural attributes possibly associated with specific function. These parameters are based on calculating wavelet gradients from cell images followed by the extraction of meaningful measures including 2nd wavelet moment, entropy of orientation, and curvature. For the three cell types analyzed, the mean 2nd wavelet moment, which relates to the field of influence of the dendritic-tree segments was significantly different. β cells had the highest mean 2nd wavelet moment, followed by the α and δ cells (134± 22, 93± 19 and 63± 12, respectively). There was no significant difference between cells for entropy of orientation, indicating no class with a preferential orientation of their dendritic tree. Curvature provided similar results to the 2nd wavelet moment with β cells having the highest curvature followed by α and the δ cells (mean ± SD: 161 ± 15; 134 ± 22; 121 ± 15). Our feature space analysis also indicated a difference between these cell types. No difference was found between the α and β cell types and their physiological counterparts the Y and X cells based on wavelet analysis. Both the X and Y cells can be divided into two subtypes, the ONand OFF-center cells based on the stratification level of the dendritic tree within the retina. Using 2nd wavelet moment, a difference in their morphological attributes, not reported previously, was noted for these subtypes. The 2nd wavelet moment and curvature are further discussed with respect to explaining regularity of spacing and coverage associated with retinal ganglion cell mosaics.
منابع مشابه
Automated Morphometric Analysis of the Cat Retinal Α/y , Β/x and Δ Ganglion Cells Using Wavelet Statistical Moment and Clustering Algorithms
Computational morphological analysis comprises the development of measures (indicators) that describe different form attributes of a neuron and provides additional parameters for classification algorithms. Our work addressed the problem of small group sizes often encountered in neuromorphological and neurophysiological research, automated classification tasks (unsupervised learning) and introdu...
متن کاملExtrinsic determinants of retinal ganglion cell structure in the cat.
The degree to which a retinal ganglion cell's environment can affect its morphological development was studied by manipulating the distribution of ganglion cells in the developing cat retina. In the newborn kitten there is an exuberant ganglion cell projection from temporal retina to the contralateral lateral geniculate nucleus (LGNd) (Leventhal et al., 1988) and from nasal retina to the ipsila...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملThe Morphology and Intrinsic Excitability of Developing Mouse Retinal Ganglion Cells
The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve mor...
متن کاملDendritic field development of retinal ganglion cells in the cat following neonatal damage to visual cortex: evidence for cell class specific interactions.
A well-known feature of the mammalian retina is the inverse relation that exists in central and peripheral retina between the density of retinal ganglion cells and their dendritic field sizes. Functionally, this inverse relation is thought to represent a means by which retinal coverage is maintained, despite significant changes in ganglion cell density. While it is generally agreed that the den...
متن کامل